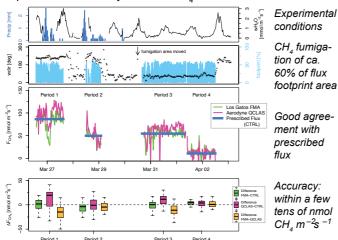


Climate & Environmental Change – MAIOLICA

Land Ecosystem Experiments

Werner Eugster¹, Rebecca Hiller¹, Dominik Brunner², Bela Tuzson², Brigitte Buchmann², Lukas Emmenegger², Bruno Neininger³, Carsten Schubert⁴, Elke Hodson⁵, Jacqueline Stieger¹, Nina Buchmann¹


- ¹ ETH Zurich, Grassland Science Group, Institute of Plant, Animal and Agroecosystem Sciences, Zürich, Switzerland
- ² Empa Material Science & Technology, Dübendorf, Switzerland
- ³ Metair AG meteorological airborne observations, Hausen a. Albis, Switzerland
- ⁴eawag, SURF, Kastanienbaum, Switzerland
- ⁵ Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

Contact:

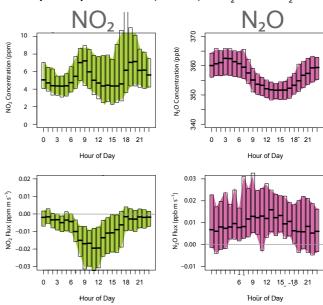
Werner Eugster, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland, ① +41 44 632 6847, e-mail: werner.eugster@agrl.ethz.ch, URL: www.maiolica.ch

Methane Flux Accuracy

In addition to the standard $\rm H_2O$ and $\rm CO_2$ flux measurements the MAIOLICA project focuses strongly on $\rm CH_4$. An important aspect is the accuracy of direct $\rm CH_4$ flux measurements.

Direct flux measurements of methane with the eddy covariance method are still scarce. The MAIOLICA consortium successfully showed that state-of-the-art flux measurements are able to reproduce a prescribed methane flux with high accuracy (lowest panel). Agreement with prescribed flux is good for both FMA (Fast Methane Analyzer) and QCLAS (Quantum Cascade Laser Absorption Spectrometer) system.

Swiss Fluxnet: Long-term GHG Fluxes



are **embedded in the national Swiss Fluxnet network** of eddy covariance flux sites with continuous long-term measurements of H₂O and CO₂ fluxes. It extends our insights into land surface interactions with the climate system with the additional key greenhouse gases CH₄ and N₂O. A strong linkage with aircraft measurements (Activity 1c) allows for **regional flux estimates**.

Additional Trace Gases: NO2, N2O

Efforts were made to extend our capability to perform eddy covariance measurements of trace gas fluxes beyond H₂O, CO₂ and CH₄. Successful measurements were done with a **Quantum Cascade Laser Absorption Spectrometer** (QCLAS) for N₂O and NO₂.

Measurements at the Chamau grassland site show a clear uptake of NO_2 with a pronounced diurnal cycle, and a clear but small N_2O efflux with a weak diurnal cycle.

Conclusions

- CCES activities have strengthened the long-term flux measurements of CO₂ and H₂O in Swiss Fluxnet
- Strong focus on CH₄ concentration and flux measurement techniques is unique in global context
- QCLAS developments and application for flux measurements is a cutting-edge research component
- Within MAIOLICA, surface boundary conditions were measured for the regional integration component